Dithallium complex of 7,9-dicarbollyl dianion

A. Ya. Usyatinsky, K. V. Budkina, and V. I. Bregadze*

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax:+7 (095) 135 5085

The preparation of a novel dithallium complex of 7,9-dicarbollyl dianion is described. The reaction of EtOTl with $Cs[7,9-(PhNHC(O))_2-7,9-C_2B_9H_9]$ gives a complex containing three Tl atoms per one substrate molecule.

Key words: thallium, dicarbollyl, complex, synthesis.

Dithallium salts of the 7,8-dicarbollyl dianion obtained in 1972¹ are convenient starting materials for the synthesis of various metallacarboranes² in which the metal atom is η^5 - or η^1 -bonded with the dicarbollyl ligand.³

It is known that 7,8-dicarbollyl dianion salts have decreased stability. For example, the dipotassium salt has not been obtained in the solid state, and the dilithium salt reported recently⁴ is stable only for one month when kept in the cold under argon. Unlike these salts and the highly hygroscopic acid, $C_2B_9H_{13}$, dithallium salts of the 7,8-dicarbollyl dianion are solid compounds stable in the air and in weakly-alkaline media.

Complexes of this type are generally obtained either by the reaction of $K_2[7,8-C_2B_9H_{11}]$ with AcOTl¹ in water or by the reaction of the $7,8-C_2B_9H_{13}$ acid with thallium ethoxide.⁵

On the other hand, dithallium complexes of the 7,9-dicarbollyl dianion, the degradation product of m-carborane(12), have not been known until now. The existence of disodium and dipotassium salts of 7,9-dicarbollyl dianions in a solution has been proven by the synthesis of metallacarboranes from them, 6 but the corresponding acid, 7 ,9- 2 C₂B₉H₁₃, has not been isolated in an individual state.

The present work deals with the preparation of the dithallium complex of the $7.9-C_2B_9H_{11}$ dianion.

Results and Discussion

We attempted to obtain the desired complex under the conditions for the synthesis of $Tl_2[7,8-C_2B_9H_{11}]$ (1) reported in Ref. 1, *i.e.*, by treatment of Me₃NH[7,9-C₂B₉H₁₂] with aqueous KOH and then with TlOAc at ~20 °C. However, although the reaction gave a yellow product, its rapid decomposition under these conditions prevented its isolation. Nevertheless, we were able to isolate the target product by decreasing the temperature of the process to 5 °C.

$$\mathsf{Me_3NH}[7,9\text{-}\mathsf{C}_2\mathsf{B}_9\mathsf{H}_{12}] \xrightarrow{1.2\mathsf{KOH},\;\mathsf{H}_2\mathsf{O}} \mathsf{TI}_2[7,9\text{-}\mathsf{C}_2\mathsf{B}_9\mathsf{H}_{11}]$$

Complex 2 is a yellow compound stable in the air but quickly decomposed in organic solvents. It is known that a typical feature of complex 1 is the ability to react with CoCl₂ or FeCl₂ giving cobalta- or ferracarboranes, respectively.¹

Unlike complex 1, compound 2 does not give metallacarboranes under these reaction conditions. Another characteristic feature of compound 1 is the formation of Tl[7,8-C₂B₉H₁₂] when 1 is dissolved in AcOH.¹ Dissolution of complex 2 in AcOH does not afford the respective salt. The 11B NMR spectrum of the reaction mixture contains an intense unresolved signal at 18 ppm (a boric acid derivative) and a set of doublet signals with the following chemical shifts, δ (J_{11}_{B-1} H): -4.4 (J = 135 Hz, B-2,5); -5.7 (J = 128 Hz, B-8); -21.4 (J = 128 Hz, B-3,4); 22.6 (J = 124 Hz, 60 dd, B-10,11); 34.3 (J = 118 Hz, B-6); 35.1 (J = 102 Hz, B-1). This set of signals is related to the $[7.9-C_2B_0H_{12}]^{-1}$ anion which is present in 4:1 ratio with respect to the product of deep degradation. It has been shown previously⁷ that the reaction of complex 1 with PPNCl (PPN is bis(triphenylphosphoranylidene)ammonium) results in the removal of the "external" Ti⁺ cation, whereas the second thallium atom is a bridging atom between the B-9, B-10, and B-11 atoms of the open face. The reaction of complex 2 with PPNCI resulted in the salt PPN[7,9-C,B,H,2].

In order to additionally stabilize the thallium atom above the open face of the $7,9-C_2B_9H_{11}$ diamion, we studied the reaction of $Cs[7,9-(PhNHC(O))_2-7,9-C_2B_9H_{10}]$ (3) with thallium ethoxide. This reaction resulted in an insoluble product. The $CsTl_3[7,9-(PhNC(O))_2-7,9-C_2B_9H_9]$ formula (4) was ascribed to this product on the basis of the elemental analysis and X-ray fluorescence data. Evidently, the

increased thallium content in complex 4 is due to thallation of the NH moiety of the original complex 3. In fact, the IR spectrum of compound 4 in KBr does not contain the narrow absorption band at 3400 cm⁻¹ (vNH) of the original salt 3 (the vibrational spectra of compound 3 obtained from carborane 1,7-(PhNHC(O))₂- $1,7-C_2B_{10}H_{10}$ (5) have been studied in detail in Ref. 8). Probably, the acidity of the NH fragment is sufficient for the reaction with thallium ethoxide, which readily reacts with C-H, S-H, and some NH acids to give the respective thallium salts. The reaction of compound 5 with EtOTl in ethanol also results in an insoluble product (6), whose IR spectrum contains no narrow band at 3400 cm⁻¹. The elemental composition of the product corresponds to a dithallium complex. Unlike the reaction of compound 3, that of dithallium salt $K_{2}[7,9-(CH_{2}OH)_{2}-7,9-C_{2}B_{9}H_{9}]$ with $Tl_{2}SO_{4}$ does not give thallium complexes, but results in products of the deep degradation of the carborane frame and metallic thallium. A similar result was obtained in the reaction of $Me_3NH[7,9-(CH_2OH)_2-7,9-C_2B_9H_{10}]$ with thallium ethoxide.

Experimental

Dithallium[7,9-dicarbollyl] (2). Me₃NH[7,9-C₂B₉H₁₂] (1.92 g, 10 mmol) was added to a solution of KOH (0.8 g) in water (50 mL), and the mixture was stirred at ~20°C under argon until dissolution of the solids. Then the reaction mixture was cooled to 5°C, and Tl₂SO₄ (3 g) in water (100 mL) was added dropwise. The resulting yellow precipitate was quickly filtered off with cooling, washed with cold water (2×50 mL), and dried *in vacuo* with P₂O₅ to give 1.4 g (26%) of complex 2, t.dec. > 246°C. Found (%): C, 4.7; H, 2.4; B, 18.8; Tl, 75.5; C₂H₁₁B₉Tl₂. Calculated (%): C, 4.4; H, 2.0; B, 18.0; Tl, 75.7. IR (vaseline oil), v/cm⁻¹: 2550 s.br. (B—H); 3115 avg (C—H).

Reaction of compound 3 with EtOTI. EtOTI (0.2 g, 0.8 mmol) was added to a solution of compound **3** (0.2 g, 0.4 mmol) in an ether/THF mixture. The precipitate that formed was filtered off, washed with THF, ethanol, and ether, and dried to give 0.13 g (30% with respect to the original complex **3**) of complex **4**. Found (%): C, 15.8; H, 2.0; B, 8.5; TI, 53.2; $C_{16}H_{19}B_9N_2O_2CsTl_3$. Calculated (%): C, 17.2; H, 1.7; B, 8.7; TI, 54.9. IR (KBr), v/cm^{-1} , > 2000 cm⁻¹): 2550 s.br.

Reaction of carborane 5 with EtOTI. EtOTI (0.25 g, 1.0 mmol) was added under argon to a solution of compound 5 (0.2 g, 0.5 mmol) in abs. ether (30 mL). The precipitate was washed with ether and ethanol and then dried with P_2O_5 (product 6 turns yellow in the air) to give 0.1 g (25%) of 6, t.dec. > 190°C. Found (%): C, 22.7; H, 2.6; B, 12.3; Tl, 53.1; $C_{16}H_{20}B_{10}N_2O_2Tl_2$. Calculated (%): C, 24.3; H, 2.5; B, 13.7; Tl, 51.7. IR (KBr, v/cm^{-1} , > 2000 cm⁻¹): 2600 s.br.

This work was financially supported by the Russian Foundation for Basic Research (Project 93-03-18654).

References

- J. L. Spencer, M. Green, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1972, 1178.
- M. J. Manning, C. B. Knobler, and M. F. Hawthorne, J. Am. Chem. Soc., 1988, 110, 4458.
- 3. H. W. Colquhoun, T. J. Greenhough, and M. G. H. Wallbridge, J. Chem. Soc., Dalton Trans., 1979, 619.
- 4. R. Uhrhammer, D. J. Crouther, J. D. Olson, D. Swenson, and R. F. Jordan, *Organometallics*, 1992, 11, 3098.
- P. Jutzi, D. Wegener, and M. B. Hursthouse, *Chem. Ber.*, 1991, **124**, 295.
- M. F. Hawthorne, D. C. Young, T. D. Andrews,
 D. V. Howe, R. L. Pillling, A. D. Pitts, M. Reintjes, L. F.
 Warren, and P. A. Wegner, J. Am. Chem. Soc, 1968, 90, 879.
- M. J. Manning, C. B. Knobler, M. F. Hawthorne, and J. Do, *Inorg. Chem.*, 1991, 30, 3591.
- 8. L. A. Leites, G. A. Kats, S. S. Bukalov, and L. G. Komarova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, 371 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 316 (Engl. Transl.)].

Received August 24, 1993